优雅关闭和清理
清单 20-20 中的代码通过使用线程池异步响应请求,正如我们预期的那样。我们收到了一些关于 workers
、id
和 thread
字段的警告,这些字段我们没有直接使用,这提醒我们没有清理任何东西。当我们使用不太优雅的 ctrl-c 方法停止主线程时,所有其他线程也会立即停止,即使它们正在处理请求。
接下来,我们将实现 Drop
特征,以便在池中的每个线程上调用 join
,以便它们在关闭之前完成正在处理的请求。然后,我们将实现一种方法来告诉线程它们应该停止接受新请求并关闭。为了查看此代码的运行情况,我们将修改服务器以仅接受两个请求,然后优雅地关闭其线程池。
在 ThreadPool
上实现 Drop
特征
让我们从在我们的线程池上实现 Drop
开始。当线程池被丢弃时,我们的所有线程都应该加入以确保它们完成工作。清单 20-22 显示了 Drop
实现的第一次尝试;此代码还不能完全正常工作。
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Job>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool { workers, sender }
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
worker.thread.join().unwrap();
}
}
}
struct Worker {
id: usize,
thread: thread::JoinHandle<()>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let job = receiver.lock().unwrap().recv().unwrap();
println!("Worker {id} got a job; executing.");
job();
});
Worker { id, thread }
}
}
首先,我们遍历线程池 workers
中的每一个。我们在这里使用 &mut
,因为 self
是一个可变引用,并且我们也需要能够修改 worker
。对于每个 worker,我们打印一条消息,说明该 worker 正在关闭,然后我们在该 worker 的线程上调用 join
。如果对 join
的调用失败,我们将使用 unwrap
使 Rust panic 并进入非正常关闭。
这是我们在编译此代码时遇到的错误
$ cargo check
Checking hello v0.1.0 (file:///projects/hello)
error[E0507]: cannot move out of `worker.thread` which is behind a mutable reference
--> src/lib.rs:52:13
|
52 | worker.thread.join().unwrap();
| ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this method call
| |
| move occurs because `worker.thread` has type `JoinHandle<()>`, which does not implement the `Copy` trait
|
note: `JoinHandle::<T>::join` takes ownership of the receiver `self`, which moves `worker.thread`
--> /rustc/07dca489ac2d933c78d3c5158e3f43beefeb02ce/library/std/src/thread/mod.rs:1649:17
For more information about this error, try `rustc --explain E0507`.
error: could not compile `hello` (lib) due to 1 previous error
该错误告诉我们无法调用 join
,因为我们只有一个对每个 worker
的可变借用,而 join
会获取其参数的所有权。要解决此问题,我们需要将线程移出拥有 thread
的 Worker
实例,以便 join
可以消耗该线程。我们在代码清单 17-15 中做到了这一点:如果 Worker
持有一个 Option<thread::JoinHandle<()>>
,我们可以对 Option
调用 take
方法,将值从 Some
变体中移出,并在其位置留下一个 None
变体。换句话说,正在运行的 Worker
在 thread
中将具有一个 Some
变体,当我们想要清理 Worker
时,我们将用 None
替换 Some
,以便 Worker
没有要运行的线程。
所以我们知道我们想像这样更新 Worker
的定义
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Job>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool { workers, sender }
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
worker.thread.join().unwrap();
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let job = receiver.lock().unwrap().recv().unwrap();
println!("Worker {id} got a job; executing.");
job();
});
Worker { id, thread }
}
}
现在,让我们依靠编译器来查找需要更改的其他地方。检查此代码,我们得到两个错误
$ cargo check
Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `join` found for enum `Option` in the current scope
--> src/lib.rs:52:27
|
52 | worker.thread.join().unwrap();
| ^^^^ method not found in `Option<JoinHandle<()>>`
|
note: the method `join` exists on the type `JoinHandle<()>`
--> /rustc/07dca489ac2d933c78d3c5158e3f43beefeb02ce/library/std/src/thread/mod.rs:1649:5
help: consider using `Option::expect` to unwrap the `JoinHandle<()>` value, panicking if the value is an `Option::None`
|
52 | worker.thread.expect("REASON").join().unwrap();
| +++++++++++++++++
error[E0308]: mismatched types
--> src/lib.rs:72:22
|
72 | Worker { id, thread }
| ^^^^^^ expected `Option<JoinHandle<()>>`, found `JoinHandle<_>`
|
= note: expected enum `Option<JoinHandle<()>>`
found struct `JoinHandle<_>`
help: try wrapping the expression in `Some`
|
72 | Worker { id, thread: Some(thread) }
| +++++++++++++ +
Some errors have detailed explanations: E0308, E0599.
For more information about an error, try `rustc --explain E0308`.
error: could not compile `hello` (lib) due to 2 previous errors
让我们解决第二个错误,它指向 Worker::new
末尾的代码;当我们创建一个新的 Worker
时,我们需要将 thread
值包装在 Some
中。进行以下更改以修复此错误
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Job>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool { workers, sender }
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
worker.thread.join().unwrap();
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
// --snip--
let thread = thread::spawn(move || loop {
let job = receiver.lock().unwrap().recv().unwrap();
println!("Worker {id} got a job; executing.");
job();
});
Worker {
id,
thread: Some(thread),
}
}
}
第一个错误在我们的 Drop
实现中。我们之前提到过,我们打算对 Option
值调用 take
,以便将 thread
从 worker
中移出。以下更改将做到这一点
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Job>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool { workers, sender }
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
if let Some(thread) = worker.thread.take() {
thread.join().unwrap();
}
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let job = receiver.lock().unwrap().recv().unwrap();
println!("Worker {id} got a job; executing.");
job();
});
Worker {
id,
thread: Some(thread),
}
}
}
正如第 17 章中所讨论的,Option
上的 take
方法会取出 Some
变体,并在其位置留下 None
。我们正在使用 if let
来解构 Some
并获取线程;然后我们在该线程上调用 join
。如果 worker 的线程已经是 None
,我们知道该 worker 的线程已经被清理,所以在这种情况下什么也不会发生。
向线程发送信号以停止侦听作业
经过所有这些更改,我们的代码编译时没有任何警告。然而,坏消息是这段代码还没有按照我们想要的方式运行。关键在于 Worker
实例的线程运行的闭包中的逻辑:目前,我们调用 join
,但这不会关闭线程,因为它们会永远 loop
寻找作业。如果我们尝试使用当前的 drop
实现删除 ThreadPool
,则主线程将永远阻塞,等待第一个线程完成。
要解决此问题,我们需要更改 ThreadPool
drop
实现,然后更改 Worker
循环。
首先,我们将更改 ThreadPool
drop
实现,以在等待线程完成之前显式删除 sender
。代码清单 20-23 显示了对 ThreadPool
的更改,以显式删除 sender
。我们使用与线程相同的 Option
和 take
技术,以便能够将 sender
从 ThreadPool
中移出
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: Option<mpsc::Sender<Job>>,
}
// --snip--
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
// --snip--
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool {
workers,
sender: Some(sender),
}
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.as_ref().unwrap().send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
drop(self.sender.take());
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
if let Some(thread) = worker.thread.take() {
thread.join().unwrap();
}
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let job = receiver.lock().unwrap().recv().unwrap();
println!("Worker {id} got a job; executing.");
job();
});
Worker {
id,
thread: Some(thread),
}
}
}
删除 sender
会关闭通道,这表示不会再发送消息。当这种情况发生时,worker 在无限循环中对 recv
的所有调用都将返回错误。在代码清单 20-24 中,我们将更改 Worker
循环以在这种情况下优雅地退出循环,这意味着线程将在 ThreadPool
drop
实现调用 join
时完成。
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: Option<mpsc::Sender<Job>>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool {
workers,
sender: Some(sender),
}
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.as_ref().unwrap().send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
drop(self.sender.take());
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
if let Some(thread) = worker.thread.take() {
thread.join().unwrap();
}
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let message = receiver.lock().unwrap().recv();
match message {
Ok(job) => {
println!("Worker {id} got a job; executing.");
job();
}
Err(_) => {
println!("Worker {id} disconnected; shutting down.");
break;
}
}
});
Worker {
id,
thread: Some(thread),
}
}
}
为了查看此代码的运行情况,让我们修改 main
以仅接受两个请求,然后优雅地关闭服务器,如代码清单 20-25 所示。
文件名:src/main.rs
use hello::ThreadPool;
use std::{
fs,
io::{prelude::*, BufReader},
net::{TcpListener, TcpStream},
thread,
time::Duration,
};
fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
let pool = ThreadPool::new(4);
for stream in listener.incoming().take(2) {
let stream = stream.unwrap();
pool.execute(|| {
handle_connection(stream);
});
}
println!("Shutting down.");
}
fn handle_connection(mut stream: TcpStream) {
let buf_reader = BufReader::new(&mut stream);
let request_line = buf_reader.lines().next().unwrap().unwrap();
let (status_line, filename) = match &request_line[..] {
"GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
"GET /sleep HTTP/1.1" => {
thread::sleep(Duration::from_secs(5));
("HTTP/1.1 200 OK", "hello.html")
}
_ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
};
let contents = fs::read_to_string(filename).unwrap();
let length = contents.len();
let response =
format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");
stream.write_all(response.as_bytes()).unwrap();
}
您不希望现实世界的 Web 服务器在仅处理两个请求后就关闭。这段代码只是演示了正常关闭和清理工作正常。
take
方法在 Iterator
trait 中定义,并且最多将迭代限制为前两项。ThreadPool
将在 main
结束时超出范围,并且 drop
实现将运行。
使用 cargo run
启动服务器,并发出三个请求。第三个请求应该会出错,并且在您的终端中应该会看到类似于以下内容的输出
$ cargo run
Compiling hello v0.1.0 (file:///projects/hello)
Finished dev [unoptimized + debuginfo] target(s) in 1.0s
Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3
您可能会看到打印的 worker 和消息的顺序不同。我们可以从消息中看到这段代码是如何工作的:worker 0 和 3 收到了前两个请求。服务器在第二个连接后停止接受连接,并且 ThreadPool
上的 Drop
实现甚至在 worker 3 开始其工作之前就开始执行。删除 sender
会断开所有 worker 的连接,并告诉它们关闭。每个 worker 在断开连接时都会打印一条消息,然后线程池调用 join
等待每个 worker 线程完成。
请注意此特定执行的一个有趣方面:ThreadPool
删除了 sender
,并且在任何 worker 收到错误之前,我们尝试加入 worker 0。worker 0 尚未从 recv
收到错误,因此主线程阻塞等待 worker 0 完成。与此同时,worker 3 收到了一项工作,然后所有线程都收到了一个错误。当 worker 0 完成后,主线程等待其余 worker 完成。此时,它们都退出了循环并停止了。
恭喜!我们现在已经完成了我们的项目;我们有了一个基本的 Web 服务器,它使用线程池来异步响应。我们能够执行服务器的正常关闭,从而清理池中的所有线程。
以下是供参考的完整代码
文件名:src/main.rs
use hello::ThreadPool;
use std::{
fs,
io::{prelude::*, BufReader},
net::{TcpListener, TcpStream},
thread,
time::Duration,
};
fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
let pool = ThreadPool::new(4);
for stream in listener.incoming().take(2) {
let stream = stream.unwrap();
pool.execute(|| {
handle_connection(stream);
});
}
println!("Shutting down.");
}
fn handle_connection(mut stream: TcpStream) {
let buf_reader = BufReader::new(&mut stream);
let request_line = buf_reader.lines().next().unwrap().unwrap();
let (status_line, filename) = match &request_line[..] {
"GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
"GET /sleep HTTP/1.1" => {
thread::sleep(Duration::from_secs(5));
("HTTP/1.1 200 OK", "hello.html")
}
_ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
};
let contents = fs::read_to_string(filename).unwrap();
let length = contents.len();
let response =
format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");
stream.write_all(response.as_bytes()).unwrap();
}
文件名:src/lib.rs
use std::{
sync::{mpsc, Arc, Mutex},
thread,
};
pub struct ThreadPool {
workers: Vec<Worker>,
sender: Option<mpsc::Sender<Job>>,
}
type Job = Box<dyn FnOnce() + Send + 'static>;
impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool {
workers,
sender: Some(sender),
}
}
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
self.sender.as_ref().unwrap().send(job).unwrap();
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
drop(self.sender.take());
for worker in &mut self.workers {
println!("Shutting down worker {}", worker.id);
if let Some(thread) = worker.thread.take() {
thread.join().unwrap();
}
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
let thread = thread::spawn(move || loop {
let message = receiver.lock().unwrap().recv();
match message {
Ok(job) => {
println!("Worker {id} got a job; executing.");
job();
}
Err(_) => {
println!("Worker {id} disconnected; shutting down.");
break;
}
}
});
Worker {
id,
thread: Some(thread),
}
}
}
我们可以在这里做更多的事情!如果您想继续增强此项目,以下是一些想法
- 向
ThreadPool
及其公共方法添加更多文档。 - 添加库功能的测试。
- 将对
unwrap
的调用更改为更强大的错误处理。 - 使用
ThreadPool
执行除服务 Web 请求之外的其他任务。 - 在 crates.io 上找到一个线程池 crate,并使用该 crate 实现一个类似的 Web 服务器。然后将其 API 和健壮性与我们实现的线程池进行比较。
总结
干得好!您已经读完了本书!我们要感谢您加入我们这次 Rust 之旅。您现在已经准备好实现自己的 Rust 项目并帮助他人完成项目。请记住,有一个热情的 Rustacean 社区,他们很乐意帮助您应对在 Rust 旅途中遇到的任何挑战。