优雅关闭和清理

清单 20-20 中的代码通过使用线程池异步响应请求,正如我们预期的那样。我们收到了一些关于 workersidthread 字段的警告,这些字段我们没有直接使用,这提醒我们没有清理任何东西。当我们使用不太优雅的 ctrl-c 方法停止主线程时,所有其他线程也会立即停止,即使它们正在处理请求。

接下来,我们将实现 Drop 特征,以便在池中的每个线程上调用 join,以便它们在关闭之前完成正在处理的请求。然后,我们将实现一种方法来告诉线程它们应该停止接受新请求并关闭。为了查看此代码的运行情况,我们将修改服务器以仅接受两个请求,然后优雅地关闭其线程池。

ThreadPool 上实现 Drop 特征

让我们从在我们的线程池上实现 Drop 开始。当线程池被丢弃时,我们的所有线程都应该加入以确保它们完成工作。清单 20-22 显示了 Drop 实现的第一次尝试;此代码还不能完全正常工作。

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}

清单 20-22:在线程池超出作用域时加入每个线程

首先,我们遍历线程池 workers 中的每一个。我们在这里使用 &mut,因为 self 是一个可变引用,并且我们也需要能够修改 worker。对于每个 worker,我们打印一条消息,说明该 worker 正在关闭,然后我们在该 worker 的线程上调用 join。如果对 join 的调用失败,我们将使用 unwrap 使 Rust panic 并进入非正常关闭。

这是我们在编译此代码时遇到的错误

$ cargo check
    Checking hello v0.1.0 (file:///projects/hello)
error[E0507]: cannot move out of `worker.thread` which is behind a mutable reference
  --> src/lib.rs:52:13
   |
52 |             worker.thread.join().unwrap();
   |             ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this method call
   |             |
   |             move occurs because `worker.thread` has type `JoinHandle<()>`, which does not implement the `Copy` trait
   |
note: `JoinHandle::<T>::join` takes ownership of the receiver `self`, which moves `worker.thread`
  --> /rustc/07dca489ac2d933c78d3c5158e3f43beefeb02ce/library/std/src/thread/mod.rs:1649:17

For more information about this error, try `rustc --explain E0507`.
error: could not compile `hello` (lib) due to 1 previous error

该错误告诉我们无法调用 join,因为我们只有一个对每个 worker 的可变借用,而 join 会获取其参数的所有权。要解决此问题,我们需要将线程移出拥有 threadWorker 实例,以便 join 可以消耗该线程。我们在代码清单 17-15 中做到了这一点:如果 Worker 持有一个 Option<thread::JoinHandle<()>>,我们可以对 Option 调用 take 方法,将值从 Some 变体中移出,并在其位置留下一个 None 变体。换句话说,正在运行的 Workerthread 中将具有一个 Some 变体,当我们想要清理 Worker 时,我们将用 None 替换 Some,以便 Worker 没有要运行的线程。

所以我们知道我们想像这样更新 Worker 的定义

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}

现在,让我们依靠编译器来查找需要更改的其他地方。检查此代码,我们得到两个错误

$ cargo check
    Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `join` found for enum `Option` in the current scope
  --> src/lib.rs:52:27
   |
52 |             worker.thread.join().unwrap();
   |                           ^^^^ method not found in `Option<JoinHandle<()>>`
   |
note: the method `join` exists on the type `JoinHandle<()>`
  --> /rustc/07dca489ac2d933c78d3c5158e3f43beefeb02ce/library/std/src/thread/mod.rs:1649:5
help: consider using `Option::expect` to unwrap the `JoinHandle<()>` value, panicking if the value is an `Option::None`
   |
52 |             worker.thread.expect("REASON").join().unwrap();
   |                          +++++++++++++++++

error[E0308]: mismatched types
  --> src/lib.rs:72:22
   |
72 |         Worker { id, thread }
   |                      ^^^^^^ expected `Option<JoinHandle<()>>`, found `JoinHandle<_>`
   |
   = note: expected enum `Option<JoinHandle<()>>`
            found struct `JoinHandle<_>`
help: try wrapping the expression in `Some`
   |
72 |         Worker { id, thread: Some(thread) }
   |                      +++++++++++++      +

Some errors have detailed explanations: E0308, E0599.
For more information about an error, try `rustc --explain E0308`.
error: could not compile `hello` (lib) due to 2 previous errors

让我们解决第二个错误,它指向 Worker::new 末尾的代码;当我们创建一个新的 Worker 时,我们需要将 thread 值包装在 Some 中。进行以下更改以修复此错误

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        // --snip--

        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

第一个错误在我们的 Drop 实现中。我们之前提到过,我们打算对 Option 值调用 take,以便将 threadworker 中移出。以下更改将做到这一点

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

正如第 17 章中所讨论的,Option 上的 take 方法会取出 Some 变体,并在其位置留下 None。我们正在使用 if let 来解构 Some 并获取线程;然后我们在该线程上调用 join。如果 worker 的线程已经是 None,我们知道该 worker 的线程已经被清理,所以在这种情况下什么也不会发生。

向线程发送信号以停止侦听作业

经过所有这些更改,我们的代码编译时没有任何警告。然而,坏消息是这段代码还没有按照我们想要的方式运行。关键在于 Worker 实例的线程运行的闭包中的逻辑:目前,我们调用 join,但这不会关闭线程,因为它们会永远 loop 寻找作业。如果我们尝试使用当前的 drop 实现删除 ThreadPool,则主线程将永远阻塞,等待第一个线程完成。

要解决此问题,我们需要更改 ThreadPool drop 实现,然后更改 Worker 循环。

首先,我们将更改 ThreadPool drop 实现,以在等待线程完成之前显式删除 sender。代码清单 20-23 显示了对 ThreadPool 的更改,以显式删除 sender。我们使用与线程相同的 Optiontake 技术,以便能够将 senderThreadPool 中移出

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}
// --snip--

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        // --snip--

        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

代码清单 20-23:在加入工作线程之前显式删除 sender

删除 sender 会关闭通道,这表示不会再发送消息。当这种情况发生时,worker 在无限循环中对 recv 的所有调用都将返回错误。在代码清单 20-24 中,我们将更改 Worker 循环以在这种情况下优雅地退出循环,这意味着线程将在 ThreadPool drop 实现调用 join 时完成。

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

代码清单 20-24:当 recv 返回错误时,显式跳出循环

为了查看此代码的运行情况,让我们修改 main 以仅接受两个请求,然后优雅地关闭服务器,如代码清单 20-25 所示。

文件名:src/main.rs

use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&mut stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}

代码清单 20-25:通过退出循环在处理两个请求后关闭服务器

您不希望现实世界的 Web 服务器在仅处理两个请求后就关闭。这段代码只是演示了正常关闭和清理工作正常。

take 方法在 Iterator trait 中定义,并且最多将迭代限制为前两项。ThreadPool 将在 main 结束时超出范围,并且 drop 实现将运行。

使用 cargo run 启动服务器,并发出三个请求。第三个请求应该会出错,并且在您的终端中应该会看到类似于以下内容的输出

$ cargo run
   Compiling hello v0.1.0 (file:///projects/hello)
    Finished dev [unoptimized + debuginfo] target(s) in 1.0s
     Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

您可能会看到打印的 worker 和消息的顺序不同。我们可以从消息中看到这段代码是如何工作的:worker 0 和 3 收到了前两个请求。服务器在第二个连接后停止接受连接,并且 ThreadPool 上的 Drop 实现甚至在 worker 3 开始其工作之前就开始执行。删除 sender 会断开所有 worker 的连接,并告诉它们关闭。每个 worker 在断开连接时都会打印一条消息,然后线程池调用 join 等待每个 worker 线程完成。

请注意此特定执行的一个有趣方面:ThreadPool 删除了 sender,并且在任何 worker 收到错误之前,我们尝试加入 worker 0。worker 0 尚未从 recv 收到错误,因此主线程阻塞等待 worker 0 完成。与此同时,worker 3 收到了一项工作,然后所有线程都收到了一个错误。当 worker 0 完成后,主线程等待其余 worker 完成。此时,它们都退出了循环并停止了。

恭喜!我们现在已经完成了我们的项目;我们有了一个基本的 Web 服务器,它使用线程池来异步响应。我们能够执行服务器的正常关闭,从而清理池中的所有线程。

以下是供参考的完整代码

文件名:src/main.rs

use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&mut stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}

文件名:src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

我们可以在这里做更多的事情!如果您想继续增强此项目,以下是一些想法

  • ThreadPool 及其公共方法添加更多文档。
  • 添加库功能的测试。
  • 将对 unwrap 的调用更改为更强大的错误处理。
  • 使用 ThreadPool 执行除服务 Web 请求之外的其他任务。
  • crates.io 上找到一个线程池 crate,并使用该 crate 实现一个类似的 Web 服务器。然后将其 API 和健壮性与我们实现的线程池进行比较。

总结

干得好!您已经读完了本书!我们要感谢您加入我们这次 Rust 之旅。您现在已经准备好实现自己的 Rust 项目并帮助他人完成项目。请记住,有一个热情的 Rustacean 社区,他们很乐意帮助您应对在 Rust 旅途中遇到的任何挑战。