Drain
让我们继续学习 Drain。Drain 与 IntoIter 大体相同,不同之处在于它不是消耗 Vec,而是借用 Vec 并保持其分配不变。现在我们只实现“基本”的全范围版本。
use std::marker::PhantomData;
struct Drain<'a, T: 'a> {
// Need to bound the lifetime here, so we do it with `&'a mut Vec<T>`
// because that's semantically what we contain. We're "just" calling
// `pop()` and `remove(0)`.
vec: PhantomData<&'a mut Vec<T>>,
start: *const T,
end: *const T,
}
impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
if self.start == self.end {
None
-- 等等,这看起来很熟悉。让我们做更多的压缩。IntoIter 和 Drain 具有完全相同的结构,让我们将其分解出来。
struct RawValIter<T> {
start: *const T,
end: *const T,
}
impl<T> RawValIter<T> {
// unsafe to construct because it has no associated lifetimes.
// This is necessary to store a RawValIter in the same struct as
// its actual allocation. OK since it's a private implementation
// detail.
unsafe fn new(slice: &[T]) -> Self {
RawValIter {
start: slice.as_ptr(),
end: if slice.len() == 0 {
// if `len = 0`, then this is not actually allocated memory.
// Need to avoid offsetting because that will give wrong
// information to LLVM via GEP.
slice.as_ptr()
} else {
slice.as_ptr().add(slice.len())
}
}
}
}
// Iterator and DoubleEndedIterator impls identical to IntoIter.
IntoIter 变为如下
pub struct IntoIter<T> {
_buf: RawVec<T>, // we don't actually care about this. Just need it to live.
iter: RawValIter<T>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {
for _ in &mut *self {}
}
}
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
unsafe {
let iter = RawValIter::new(&self);
let buf = ptr::read(&self.buf);
mem::forget(self);
IntoIter {
iter,
_buf: buf,
}
}
}
}
请注意,我在此设计中留下了一些怪癖,以便更容易地将 Drain 升级为使用任意子范围。特别是我们*可以*让 RawValIter 在 drop 时清空自己,但这对于更复杂的 Drain 来说是行不通的。我们还使用切片来简化 Drain 初始化。
好了,现在 Drain 真的很简单
use std::marker::PhantomData;
pub struct Drain<'a, T: 'a> {
vec: PhantomData<&'a mut Vec<T>>,
iter: RawValIter<T>,
}
impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) {
for _ in &mut *self {}
}
}
impl<T> Vec<T> {
pub fn drain(&mut self) -> Drain<T> {
let iter = unsafe { RawValIter::new(&self) };
// this is a mem::forget safety thing. If Drain is forgotten, we just
// leak the whole Vec's contents. Also we need to do this *eventually*
// anyway, so why not do it now?
self.len = 0;
Drain {
iter,
vec: PhantomData,
}
}
}
有关 mem::forget
问题的更多详细信息,请参阅关于泄漏的部分。